
Intel Architecture Software Developer’s Manual 53-941

P

P 53

53.1 PACKSSWB/PACKSSDW—Pack with Signed
Saturation

Description
Packs and saturates signed words into bytes (PACKSSWB) or signed doublewords into words
(PACKSSDW). The PACKSSWB instruction packs 4 signed words from the destination operand
(first operand) and 4 signed words from the source operand (second operand) into 8 signed bytes in
the destination operand. If the signed value of a word is beyond the range of a signed byte (that is,
greater than 7FH or less than 80H), the saturated byte value of 7FH or 80H, respectively, is stored
into the destination.

The PACKSSDW instruction packs 2 signed doublewords from the destination operand (first
operand) and 2 signed doublewords from the source operand (second operand) into 4 signed words
in the destination operand (see Figure 53-1). If the signed value of a doubleword is beyond the
range of a signed word (that is, greater than 7FFFH or less than 8000H), the saturated word value
of 7FFFH or 8000H, respectively, is stored into the destination.

The destination operand for either the PACKSSWB or PACKSSDW instruction must be an MMX
register; the source operand may be either an MMX register or a quadword memory location.

Operation
IF instruction is PACKSSWB

THEN
DEST(7..0) ← SaturateSignedWordToSignedByte DEST(15..0);
DEST(15..8) ← SaturateSignedWordToSignedByte DEST(31..16);
DEST(23..16) ← SaturateSignedWordToSignedByte DEST(47..32);
DEST(31..24) ← SaturateSignedWordToSignedByte DEST(63..48);
DEST(39..32) ← SaturateSignedWordToSignedByte SRC(15..0);
DEST(47..40) ← SaturateSignedWordToSignedByte SRC(31..16);
DEST(55..48) ← SaturateSignedWordToSignedByte SRC(47..32);
DEST(63..56) ← SaturateSignedWordToSignedByte SRC(63..48);

Opcode Instruction Description

0F 63 /r PACKSSWB mm, mm/
m64

Packs and saturate pack 4 signed words from mm and 4
signed words from mm/m64 into 8 signed bytes in mm.

0F 6B /r PACKSSDW mm, mm/
m64

Pack and saturate 2 signed doublewords from mm and 2
signed doublewords from mm/m64 into 4 signed words
in mm.

Figure 53-1. Operation of the PACKSSDW Instruction

mm/m64

mm

D C B A

D’ C’ B’ A’

mm

PACKSSDW mm, mm/m64

53-942 Intel Architecture Software Developer’s Manual

P

ELSE (* instruction is PACKSSDW *)
DEST(15..0) ← SaturateSignedDoublewordToSignedWord DEST(31..0);
DEST(31..16) ← SaturateSignedDoublewordToSignedWord DEST(63..32);
DEST(47..32) ← SaturateSignedDoublewordToSignedWord SRC(31..0);
DEST(63..48) ← SaturateSignedDoublewordToSignedWord SRC(63..32);

FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Intel Architecture Software Developer’s Manual 53-943

P

53.2 PACKUSWB—Pack with Unsigned Saturation

Description
Packs and saturates 4 signed words from the destination operand (first operand) and 4 signed words
from the source operand (second operand) into 8 unsigned bytes in the destination operand (see
Figure 53-2). If the signed value of a word is beyond the range of an unsigned byte (that is, greater
than FFH or less than 00H), the saturated byte value of FFH or 00H, respectively, is stored into the
destination.

The destination operand must be an MMX register; the source operand may be either an MMX
register or a quadword memory location.

Operation
DEST(7..0) ← SaturateSignedWordToUnsignedByte DEST(15..0);
DEST(15..8) ← SaturateSignedWordToUnsignedByte DEST(31..16);
DEST(23..16) ← SaturateSignedWordToUnsignedByte DEST(47..32);
DEST(31..24) ← SaturateSignedWordToUnsignedByte DEST(63..48);
DEST(39..32) ← SaturateSignedWordToUnsignedByte SRC(15..0);
DEST(47..40) ← SaturateSignedWordToUnsignedByte SRC(31..16);
DEST(55..48) ← SaturateSignedWordToUnsignedByte SRC(47..32);
DEST(63..56) ← SaturateSignedWordToUnsignedByte SRC(63..48);

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description

0F 67 /r PACKUSWB mm, mm/
m64

Pack and saturate 4 signed words from mm and 4
signed words from mm/m64 into 8 unsigned bytes in
mm.

Figure 53-2. Operation of the PACKUSWB Instruction

PACKUSWB mm, mm/m64
mm/m64 mm

mm

3006014

H

G

F

E

H’

G’

F’

E’

D’

C’

B’

A’

D

C

B

A

53-944 Intel Architecture Software Developer’s Manual

P

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

53.3 PADDB/PADDW/PADDD—Packed Add

Description
Adds the individual data elements (bytes, words, or doublewords) of the source operand (second
operand) to the individual data elements of the destination operand (first operand). (See Figure
53-3.) If the result of an individual addition exceeds the range for the specified data type
(overflows), the result is wrapped around, meaning that the result is truncated so that only the
lower (least significant) bits of the result are returned (that is, the carry is ignored).

The destination operand must be an MMX register; the source operand can be either an MMX
register or a quadword memory location.

Opcode Instruction Description

0F FC /r PADDB mm, mm/
m64 Add packed bytes from mm/m64 to packed bytes in mm.

0F FD /r PADDW mm, mm/
m64

Add packed words from mm/m64 to packed words in
mm.

0F FE /r PADDD mm, mm/
m64

Add packed doublewords from mm/m64 to packed
doublewords in mm.

Intel Architecture Software Developer’s Manual 53-945

P

The PADDB instruction adds the bytes of the source operand to the bytes of the destination
operand and stores the results to the destination operand. When an individual result is too large to
be represented in 8 bits, the lower 8 bits of the result are written to the destination operand and
therefore the result wraps around.

The PADDW instruction adds the words of the source operand to the words of the destination
operand and stores the results to the destination operand. When an individual result is too large to
be represented in 16 bits, the lower 16 bits of the result are written to the destination operand and
therefore the result wraps around.

The PADDD instruction adds the doublewords of the source operand to the doublewords of the
destination operand and stores the results to the destination operand. When an individual result is
too large to be represented in 32 bits, the lower 32 bits of the result are written to the destination
operand and therefore the result wraps around.

Note that like the integer ADD instruction, the PADDB, PADDW, and PADDD instructions can
operate on either unsigned or signed (two’s complement notation) packed integers. Unlike the
integer instructions, none of the MMX instructions affect the EFLAGS register. With MMX
instructions, there are no carry or overflow flags to indicate when overflow has occurred, so the
software must control the range of values or else use the “with saturation” MMX instructions.

Operation
IF instruction is PADDB

THEN
DEST(7..0) ← DEST(7..0) + SRC(7..0);
DEST(15..8) ← DEST(15..8) + SRC(15..8);
DEST(23..16) ← DEST(23..16)+ SRC(23..16);
DEST(31..24) ← DEST(31..24) + SRC(31..24);
DEST(39..32) ← DEST(39..32) + SRC(39..32);
DEST(47..40) ← DEST(47..40)+ SRC(47..40);
DEST(55..48) ← DEST(55..48) + SRC(55..48);
DEST(63..56) ← DEST(63..56) + SRC(63..56);

ELSEIF instruction is PADDW
THEN

DEST(15..0) ← DEST(15..0) + SRC(15..0);
DEST(31..16) ← DEST(31..16) + SRC(31..16);
DEST(47..32) ← DEST(47..32) + SRC(47..32);
DEST(63..48) ← DEST(63..48) + SRC(63..48);

ELSE (* instruction is PADDD *)
DEST(31..0) ← DEST(31..0) + SRC(31..0);
DEST(63..32) ← DEST(63..32) + SRC(63..32);

FI;

Flags Affected
None.

Figure 53-3. Operation of the PADDW Instruction

PADDW mm, mm/m64

mm

mm/m64

mm

1000000000000000 0111111100111000

+ ++ +
1111111111111111 0001011100000111

0111111111111111 1001011000111111

 3006015

53-946 Intel Architecture Software Developer’s Manual

P

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

53.4 PADDSB/PADDSW—Packed Add with Saturation

Opcode Instruction Description

0F EC /r PADDSB mm, mm/
m64

Add signed packed bytes from mm/m64 to signed
packed bytes in mm and saturate.

0F ED /r PADDSW mm, mm/
m64

Add signed packed words from mm/m64 to signed
packed words in mm and saturate.

Intel Architecture Software Developer’s Manual 53-947

P

Description
Adds the individual signed data elements (bytes or words) of the source operand (second operand)
to the individual signed data elements of the destination operand (first operand). (See Figure 53-4.)
If the result of an individual addition exceeds the range for the specified data type, the result is
saturated. The destination operand must be an MMX register; the source operand can be either an
MMX register or a quadword memory location.

The PADDSB instruction adds the signed bytes of the source operand to the signed bytes of the
destination operand and stores the results to the destination operand. When an individual result is
beyond the range of a signed byte (that is, greater than 7FH or less than 80H), the saturated byte
value of 7FH or 80H, respectively, is written to the destination operand.

The PADDSW instruction adds the signed words of the source operand to the signed words of the
destination operand and stores the results to the destination operand. When an individual result is
beyond the range of a signed word (that is, greater than 7FFFH or less than 8000H), the saturated
word value of 7FFFH or 8000H, respectively, is written to the destination operand.

Operation
IF instruction is PADDSB

THEN
DEST(7..0) ← SaturateToSignedByte(DEST(7..0) + SRC (7..0)) ;
DEST(15..8) ← SaturateToSignedByte(DEST(15..8) + SRC(15..8));
DEST(23..16) ← SaturateToSignedByte(DEST(23..16)+ SRC(23..16));
DEST(31..24) ← SaturateToSignedByte(DEST(31..24) + SRC(31..24));
DEST(39..32) ← SaturateToSignedByte(DEST(39..32) + SRC(39..32));
DEST(47..40) ← SaturateToSignedByte(DEST(47..40)+ SRC(47..40));
DEST(55..48) ← SaturateToSignedByte(DEST(55..48) + SRC(55..48));
DEST(63..56) ← SaturateToSignedByte(DEST(63..56) + SRC(63..56));

ELSE { (* instruction is PADDSW *)
DEST(15..0) ← SaturateToSignedWord(DEST(15..0) + SRC(15..0));
DEST(31..16) ← SaturateToSignedWord(DEST(31..16) + SRC(31..16));
DEST(47..32) ← SaturateToSignedWord(DEST(47..32) + SRC(47..32));
DEST(63..48) ← SaturateToSignedWord(DEST(63..48) + SRC(63..48));

FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

Figure 53-4. Operation of the PADDSW Instruction

PADDSW mm, mm/m64

mm

mm/m64

mm

1000000000000000 0111111100111000

+ ++ +
1111111111111111 0001011100000111

1000000000000000 0111111111111111

3006016

53-948 Intel Architecture Software Developer’s Manual

P

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

53.5 PADDUSB/PADDUSW—Packed Add Unsigned with
Saturation

Description
Adds the individual unsigned data elements (bytes or words) of the packed source operand (second
operand) to the individual unsigned data elements of the packed destination operand (first
operand). (See Figure 53-5.) If the result of an individual addition exceeds the range for the
specified unsigned data type, the result is saturated. The destination operand must be an MMX
register; the source operand can be either an MMX register or a quadword memory location.

Opcode Instruction Description

0F DC /r PADDUSB mm, mm/
m64

Add unsigned packed bytes from mm/m64 to
unsigned packed bytes in mm and saturate.

0F DD /r PADDUSW mm, mm/
m64

Add unsigned packed words from mm/m64 to
unsigned packed words in mm and saturate.

Intel Architecture Software Developer’s Manual 53-949

P

The PADDUSB instruction adds the unsigned bytes of the source operand to the unsigned bytes of
the destination operand and stores the results to the destination operand. When an individual result
is beyond the range of an unsigned byte (that is, greater than FFH), the saturated unsigned byte
value of FFH is written to the destination operand.

The PADDUSW instruction adds the unsigned words of the source operand to the unsigned words
of the destination operand and stores the results to the destination operand. When an individual
result is beyond the range of an unsigned word (that is, greater than FFFFH), the saturated
unsigned word value of FFFFH is written to the destination operand.

Operation
IF instruction is PADDUSB

THEN
DEST(7..0) ← SaturateToUnsignedByte(DEST(7..0) + SRC (7..0));
DEST(15..8) ← SaturateToUnsignedByte(DEST(15..8) + SRC(15..8));
DEST(23..16) ← SaturateToUnsignedByte(DEST(23..16)+ SRC(23..16));
DEST(31..24) ← SaturateToUnsignedByte(DEST(31..24) + SRC(31..24));
DEST(39..32) ← SaturateToUnsignedByte(DEST(39..32) + SRC(39..32));
DEST(47..40) ← SaturateToUnsignedByte(DEST(47..40)+ SRC(47..40));
DEST(55..48) ← SaturateToUnsignedByte(DEST(55..48) + SRC(55..48));
DEST(63..56) ← SaturateToUnsignedByte(DEST(63..56) + SRC(63..56));

ELSE { (* instruction is PADDUSW *)
DEST(15..0) ← SaturateToUnsignedWord(DEST(15..0) + SRC(15..0));
DEST(31..16) ← SaturateToUnsignedWord(DEST(31..16) + SRC(31..16));
DEST(47..32) ← SaturateToUnsignedWord(DEST(47..32) + SRC(47..32));
DEST(63..48) ← SaturateToUnsignedWord(DEST(63..48) + SRC(63..48));

FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

Figure 53-5. Operation of the PADDUSB Instruction

PADDUSB mm, mm/m64

mm

mm/m64

mm

10000000 01111111 00111000

11111111 00010111 00000111

11111111 10010110 00111111

+ ++ +

3006017

+ ++ +

53-950 Intel Architecture Software Developer’s Manual

P

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

53.6 PAND—Logical AND

Description
Performs a bitwise logical AND operation on the quadword source (second) and destination (first)
operands and stores the result in the destination operand location (see Figure 53-6). The source
operand can be an MMX register or a quadword memory location; the destination operand must be
an MMX register. Each bit of the result of the PAND instruction is set to 1 if the corresponding bits
of the operands are both 1; otherwise it is made zero

Opcode Instruction Description

0F DB /r PAND mm, mm/m64 AND quadword from mm/m64 to quadword in mm.

Figure 53-6. Operation of the PAND Instruction

PAND mm, mm/m64

mm

mm/m64

mm

1111111111111000000000000000010110110101100010000111011101110111

0001000011011001010100000011000100011110111011110001010110010101

0001000011011000000000000000000100010100100010000001010100010101

3006019

&

Intel Architecture Software Developer’s Manual 53-951

P

Operation
DEST ← DEST AND SRC;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

53-952 Intel Architecture Software Developer’s Manual

P

53.7 PANDN—Logical AND NOT

Description
Performs a bitwise logical NOT on the quadword destination operand (first operand). Then, the
instruction performs a bitwise logical AND operation on the inverted destination operand and the
quadword source operand (second operand). (See Figure 53-7.) Each bit of the result of the AND
operation is set to one if the corresponding bits of the source and inverted destination bits are one;
otherwise it is set to zero. The result is stored in the destination operand location.

The source operand can be an MMX register or a quadword memory location; the destination
operand must be an MMX register.

Operation
DEST ← (NOT DEST) AND SRC;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Opcode Instruction Description

0F DF /r PANDN mm, mm/m64 AND quadword from mm/m64 to NOT quadword in mm.

Figure 53-7. Operation of the PANDN Instruction

~

&
m/m64

mm

mm 11111111111110000000000000000101101101010011101111000100010001000

11111111111110000000000000000101101101010011101111000100010001000

11111111111110000000000000000101101101010011101111000100010001000

PANDN mm, mm/m64

Intel Architecture Software Developer’s Manual 53-953

P

Real-Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

53.8 PCMPEQB/PCMPEQW/PCMPEQD—Packed
Compare for Equal

Description
Compares the individual data elements (bytes, words, or doublewords) in the destination operand
(first operand) to the corresponding data elements in the source operand (second operand). (See
Figure 53-8.) If a pair of data elements are equal, the corresponding data element in the destination
operand is set to all ones; otherwise, it is set to all zeros. The destination operand must be an MMX
register; the source operand may be either an MMX register or a 64-bit memory location.

Opcode Instruction Description

0F 74 /r PCMPEQB mm, mm/m64 Compare packed bytes in mm/m64 with packed bytes in mm
for equality.

0F 75 /r
PCMPEQW mm, mm/m64 Compare packed words in mm/m64 with packed words in

mm for equality.

0F 76 /r
PCMPEQD mm, mm/m64 Compare packed doublewords in mm/m64 with packed

doublewords in mm for equality.

53-954 Intel Architecture Software Developer’s Manual

P

The PCMPEQB instruction compares the bytes in the destination operand to the corresponding
bytes in the source operand, with the bytes in the destination operand being set according to the
results.

The PCMPEQW instruction compares the words in the destination operand to the corresponding
words in the source operand, with the words in the destination operand being set according to the
results.

The PCMPEQD instruction compares the doublewords in the destination operand to the
corresponding doublewords in the source operand, with the doublewords in the destination operand
being set according to the results.

Operation
IF instruction is PCMPEQB

THEN
IF DEST(7..0) = SRC(7..0)

THEN DEST(7 0) ← FFH;
ELSE DEST(7..0) ← 0;

* Continue comparison of second through seventh bytes in DEST and SRC *
IF DEST(63..56) = SRC(63..56)

THEN DEST(63..56) ← FFH;
ELSE DEST(63..56) ← 0;

ELSE IF instruction is PCMPEQW
THEN

IF DEST(15..0) = SRC(15..0)
THEN DEST(15..0) ← FFFFH;
ELSE DEST(15..0) ← 0;

* Continue comparison of second and third words in DEST and SRC *
IF DEST(63..48) = SRC(63..48)

THEN DEST(63..48) ← FFFFH;
ELSE DEST(63..48) ← 0;

ELSE (* instruction is PCMPEQD *)
IF DEST(31..0) = SRC(31..0)

THEN DEST(31..0) ← FFFFFFFFH;
ELSE DEST(31..0) ← 0;

IF DEST(63..32) = SRC(63..32)
THEN DEST(63..32) ← FFFFFFFFH;
ELSE DEST(63..32) ← 0;

FI;

Flags Affected
None:

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

Figure 53-8. Operation of the PCMPEQW Instruction

PCMPEQW mm, mm/m64

mm

mm/m64

mm

0000000000000000

0000000000000000

1111111111111111

0000000000000001

0000000000000000

0000000000000000

0000000000000111

0111000111000111

0000000000000000

0111000111000111

0111000111000111

1111111111111111

True TrueFalse False

3006020

== ==== ==

Intel Architecture Software Developer’s Manual 53-955

P

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

53.9 PCMPGTB/PCMPGTW/PCMPGTD—Packed
Compare for Greater Than

Description
Compare the individual signed data elements (bytes, words, or doublewords) in the destination
operand (first operand) to the corresponding signed data elements in the source operand (second
operand). (See Figure 53-9.) If a data element in the destination operand is greater than its

Opcode Instruction Description

0F 64 /r PCMPGTB mm, mm/
m64

Compare packed bytes in mm with packed bytes in
mm/m64 for greater value.

0F 65 /r PCMPGTW mm, mm/
m64

Compare packed words in mm with packed words in
mm/m64 for greater value.

0F 66 /r PCMPGTD mm, mm/
m64

Compare packed doublewords in mm with packed
doublewords in mm/m64 for greater value.

53-956 Intel Architecture Software Developer’s Manual

P

corresponding data element in the source operand, the data element in the destination operand is set
to all ones; otherwise, it is set to all zeros. The destination operand must be an MMX register; the
source operand may be either an MMX register or a 64-bit memory location.

The PCMPGTB instruction compares the signed bytes in the destination operand to the
corresponding signed bytes in the source operand, with the bytes in the destination operand being
set according to the results.

The PCMPGTW instruction compares the signed words in the destination operand to the
corresponding signed words in the source operand, with the words in the destination operand being
set according to the results.

The PCMPGTD instruction compares the signed doublewords in the destination operand to the
corresponding signed doublewords in the source operand, with the doublewords in the destination
operand being set according to the results.

Operation
IF instruction is PCMPGTB

THEN
IF DEST(7..0) > SRC(7..0)

THEN DEST(7 0) ← FFH;
ELSE DEST(7..0) ← 0;

* Continue comparison of second through seventh bytes in DEST and SRC *
IF DEST(63..56) > SRC(63..56)

THEN DEST(63..56) ← FFH;
ELSE DEST(63..56) ← 0;

ELSE IF instruction is PCMPGTW
THEN

IF DEST(15..0) > SRC(15..0)
THEN DEST(15..0) ← FFFFH;
ELSE DEST(15..0) ←0;

* Continue comparison of second and third bytes in DEST and SRC *
IF DEST(63..48) > SRC(63..48)

THEN DEST(63..48) ← FFFFH;
ELSE DEST(63..48) ← 0;

ELSE { (* instruction is PCMPGTD *)
IF DEST(31..0) > SRC(31..0)

THEN DEST(31..0) ← FFFFFFFFH;
ELSE DEST(31..0) ← 0;

IF DEST(63..32) > SRC(63..32)
THEN DEST(63..32) ← FFFFFFFFH;
ELSE DEST(63..32) ← 0;

FI;

Flags Affected
None.

Figure 53-9. Operation of the PCMPGTW Instruction

PCMPGTW mm, mm/m64

mm

mm/m64

mm

0000000000000000

0000000000000000

0000000000000000

0000000000000001

0000000000000000

1111111111111111

0000000000000111

0111000111000111

0000000000000000

0111000111000111

0111000111000111

0000000000000000

False FalseTrue False

3006021

> >> >

Intel Architecture Software Developer’s Manual 53-957

P

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

53.10 PMADDWD—Packed Multiply and Add

Description
Multiplies the individual signed words of the destination operand by the corresponding signed
words of the source operand, producing four signed, doubleword results (see Figure 53-10). The
two doubleword results from the multiplication of the high-order words are added together and
stored in the upper doubleword of the destination operand; the two doubleword results from the

Opcode Instruction Description

0F F5 /r PMADDWD mm, mm/
m64

Multiply the packed words in mm by the packed
words in mm/m64. Add the 32-bit pairs of results
and store in mm as doubleword

53-958 Intel Architecture Software Developer’s Manual

P

multiplication of the low-order words are added together and stored in the lower doubleword of the
destination operand. The destination operand must be an MMX register; the source operand may be
either an MMX register or a 64-bit memory location.

The PMADDWD instruction wraps around to 80000000H only when all four words of both the
source and destination operands are 8000H.

Operation
DEST(31..0) ← (DEST(15..0) ∗ SRC(15..0)) + (DEST(31..16) ∗ SRC(31..16));
DEST(63..32) ← (DEST(47..32) ∗ SRC(47..32)) + (DEST(63..48) ∗ SRC(63..48));

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Figure 53-10. Operation of the PMADDWD Instruction

∗ ∗ ∗∗
01110001110001110111000111000111

1000000000000000 0000010000000000

1100100011100011 1001110000000000

+ +
mm

PMADDWD mm, mm/m64

mm/m64

mm

Intel Architecture Software Developer’s Manual 53-959

P

Virtual-8086 Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

53.11 PMULHW—Packed Multiply High

Description
Multiplies the four signed words of the source operand (second operand) by the four signed words
of the destination operand (first operand), producing four signed, doubleword, intermediate results
(see Figure 53-11). The high-order word of each intermediate result is then written to its
corresponding word location in the destination operand. The destination operand must be an MMX
register; the source operand may be either an MMX register or a 64-bit memory location.

Operation
DEST(15..0) ← HighOrderWord(DEST(15..0) ∗ SRC(15..0));
DEST(31..16) ← HighOrderWord(DEST(31..16) ∗ SRC(31..16));
DEST(47..32) ← HighOrderWord(DEST(47..32) ∗ SRC(47..32));
DEST(63..48) ← HighOrderWord(DEST(63..48) ∗ SRC(63..48));

Flags Affected
None.

Opcode Instruction Description

0F E5 /r PMULHW mm, mm/
m64

Multiply the signed packed words in mm by the
signed packed words in mm/m64, then store the
high-order word of each doubleword result in mm.

Figure 53-11. Operation of the PMULHW Instruction

PMULHW mm, mm/m64

mm

mm/m64

mm

0111000111000111

1000000000000000

1100011100011100

0111000111000111

0000010000000000

0000000111000111

High Order High OrderHigh Order High Order

3006022

* ** *

53-960 Intel Architecture Software Developer’s Manual

P

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

53.12 PMULLW—Packed Multiply Low

Description
Multiplies the four signed or unsigned words of the source operand (second operand) with the four
signed or unsigned words of the destination operand (first operand), producing four doubleword,
intermediate results (see Figure 53-12). The low-order word of each intermediate result is then

Opcode Instruction Description

0F D5 /r PMULLW mm, mm/
m64

Multiply the packed words in mm with the packed words in
mm/m64, then store the low-order word of each
doubleword result in mm.

Intel Architecture Software Developer’s Manual 53-961

P

written to its corresponding word location in the destination operand. The destination operand must
be an MMX register; the source operand may be either an MMX register or a 64-bit memory
location.

Operation
DEST(15..0) ← LowOrderWord(DEST(15..0) ∗ SRC(15..0));
DEST(31..16) ← LowOrderWord(DEST(31..16) ∗ SRC(31..16));
DEST(47..32) ← LowOrderWord(DEST(47..32) ∗ SRC(47..32));
DEST(63..48) ← LowOrderWord(DEST(63..48) ∗ SRC(63..48));

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Figure 53-12. Operation of the PMULLW Instruction

PMULLW mm, mm/m64

mm

mm/m64

mm

0111000111000111

1000000000000000

1000000000000000

0111000111000111

0000010000000000

0001110000000000

Low Order Low OrderLow Order Low Order

3006025

* ** *

53-962 Intel Architecture Software Developer’s Manual

P

Virtual-8086 Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

53.13 POP—Pop a Value from the Stack

Description
Loads the value from the top of the stack to the location specified with the destination operand and
then increments the stack pointer. The destination operand can be a general-purpose register,
memory location, or segment register.

The address-size attribute of the stack segment determines the stack pointer size (16 bits or 32
bits—the source address size), and the operand-size attribute of the current code segment
determines the amount the stack pointer is incremented (2 bytes or 4 bytes). For example, if these
address- and operand-size attributes are 32, the 32-bit ESP register (stack pointer) is incremented
by 4 and, if they are 16, the 16-bit SP register is incremented by 2. (The B flag in the stack
segment’s segment descriptor determines the stack’s address-size attribute, and the D flag in the
current code segment’s segment descriptor, along with prefixes, determines the operand-size
attribute and also the address-size attribute of the destination operand.)

If the destination operand is one of the segment registers DS, ES, FS, GS, or SS, the value loaded
into the register must be a valid segment selector. In protected mode, popping a segment selector
into a segment register automatically causes the descriptor information associated with that
segment selector to be loaded into the hidden (shadow) part of the segment register and causes the
selector and the descriptor information to be validated (see the “Operation” section below).

Opcode Instruction Description

8F /0 POP m16 Pop top of stack into m16; increment stack pointer

8F /0 POP m32 Pop top of stack into m32; increment stack pointer

58+ rw POP r16 Pop top of stack into r16; increment stack pointer

58+ rd POP r32 Pop top of stack into r32; increment stack pointer

1F POP DS Pop top of stack into DS; increment stack pointer

07 POP ES Pop top of stack into ES; increment stack pointer

17 POP SS Pop top of stack into SS; increment stack pointer

0F A1 POP FS Pop top of stack into FS; increment stack pointer

0F A9 POP GS Pop top of stack into GS; increment stack pointer

Intel Architecture Software Developer’s Manual 53-963

P

A null value (0000-0003) may be popped into the DS, ES, FS, or GS register without causing a
general protection fault. However, any subsequent attempt to reference a segment whose
corresponding segment register is loaded with a null value causes a general protection exception
(#GP). In this situation, no memory reference occurs and the saved value of the segment register is
null.

The POP instruction cannot pop a value into the CS register. To load the CS register from the stack,
use the RET instruction.

If the ESP register is used as a base register for addressing a destination operand in memory, the
POP instruction computes the effective address of the operand after it increments the ESP register.
In the case of a 16-bit stack where ESP wraps to 0H as a result of the POP instruction, the resulting
location of the memory write is processor family specific.

The POP ESP instruction increments the stack pointer (ESP) before data at the old top of stack is
written into the destination.

A POP SS instruction inhibits all interrupts, including the NMI interrupt, until after execution of
the next instruction. This action allows sequential execution of POP SS and MOV ESP, EBP
instructions without the danger of having an invalid stack during an interrupt1. However, use of the
LSS instruction is the preferred method of loading the SS and ESP registers.

Operation
IF StackAddrSize = 32

THEN
IF OperandSize = 32

THEN
DEST ← SS:ESP; (* copy a doubleword *)
ESP ← ESP + 4;

ELSE (* OperandSize = 16*)
DEST ← SS:ESP; (* copy a word *)

ESP ← ESP + 2;
FI;

ELSE (* StackAddrSize = 16*)
IF OperandSize = 16

THEN
DEST ← SS:SP; (* copy a word *)
SP ← SP + 2;

ELSE (* OperandSize = 32 *)
DEST ← SS:SP; (* copy a doubleword *)
SP ← SP + 4;

FI;
FI;

Loading a segment register while in protected mode results in special checks and actions, as
described in the following listing. These checks are performed on the segment selector and the
segment descriptor it points to.
IF SS is loaded;

THEN
IF segment selector is null

THEN #GP(0);
FI;
IF segment selector index is outside descriptor table limits

OR segment selector’s RPL ≠ CPL
OR segment is not a writable data segment
OR DPL ≠ CPL

THEN #GP(selector);
FI;
IF segment not marked present

1. Note that in a sequence of instructions that individually delay interrupts past the following instruction, only the first instruction in the
sequence is guaranteed to delay the interrupt, but subsequent interrupt-delaying instructions may not delay the interrupt. Thus, in the
following instruction sequence:
STI
POP SS
POP ESP
interrupts may be recognized before the POP ESP executes, because STI also delays interrupts for one instruction.

53-964 Intel Architecture Software Developer’s Manual

P

THEN #SS(selector);
ELSE

SS ← segment selector;
SS ← segment descriptor;

FI;
FI;
IF DS, ES, FS or GS is loaded with non-null selector;
THEN

IF segment selector index is outside descriptor table limits
OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)

AND (both RPL and CPL > DPL))
THEN #GP(selector);

IF segment not marked present
THEN #NP(selector);

ELSE
SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;
FI;
IF DS, ES, FS or GS is loaded with a null selector;

THEN
SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If attempt is made to load SS register with null segment selector.

If the destination operand is in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

#GP(selector) If segment selector index is outside descriptor table limits.

If the SS register is being loaded and the segment selector’s RPL and the
segment descriptor’s DPL are not equal to the CPL.

If the SS register is being loaded and the segment pointed to is a nonwritable
data segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed to is
not a data or readable code segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed to is
a data or nonconforming code segment, but both the RPL and the CPL are
greater than the DPL.

#SS(0) If the current top of stack is not within the stack segment.

If a memory operand effective address is outside the SS segment limit.

#SS(selector) If the SS register is being loaded and the segment pointed to is marked not
present.

#NP If the DS, ES, FS, or GS register is being loaded and the segment pointed to is
marked not present.

#PF(fault-code) If a page fault occurs.

Intel Architecture Software Developer’s Manual 53-965

P

#AC(0) If an unaligned memory reference is made while the current privilege level is 3
and alignment checking is enabled.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment checking is enabled.

53.14 POPA/POPAD—Pop All General-Purpose Registers

Description
Pops doublewords (POPAD) or words (POPA) from the stack into the general-purpose registers.
The registers are loaded in the following order: EDI, ESI, EBP, EBX, EDX, ECX, and EAX (if the
operand-size attribute is 32) and DI, SI, BP, BX, DX, CX, and AX (if the operand-size attribute is
16). (These instructions reverse the operation of the PUSHA/PUSHAD instructions.) The value on
the stack for the ESP or SP register is ignored. Instead, the ESP or SP register is incremented after
each register is loaded.

The POPA (pop all) and POPAD (pop all double) mnemonics reference the same opcode. The
POPA instruction is intended for use when the operand-size attribute is 16 and the POPAD
instruction for when the operand-size attribute is 32. Some assemblers may force the operand size
to 16 when POPA is used and to 32 when POPAD is used (using the operand-size override prefix
[66H] if necessary). Others may treat these mnemonics as synonyms (POPA/POPAD) and use the
current setting of the operand-size attribute to determine the size of values to be popped from the
stack, regardless of the mnemonic used. (The D flag in the current code segment’s segment
descriptor determines the operand-size attribute.)

Operation
IF OperandSize = 32 (* instruction = POPAD *)
THEN

EDI ← Pop();
ESI ← Pop();
EBP ← Pop();
increment ESP by 4 (* skip next 4 bytes of stack *)
EBX ← Pop();
EDX ← Pop();
ECX ← Pop();
EAX ← Pop();

ELSE (* OperandSize = 16, instruction = POPA *)
DI ← Pop();
SI ← Pop();
BP ← Pop();

Opcode Instruction Description

61 POPA Pop DI, SI, BP, BX, DX, CX, and AX

61 POPAD Pop EDI, ESI, EBP, EBX, EDX, ECX, and EAX

53-966 Intel Architecture Software Developer’s Manual

P

increment ESP by 2 (* skip next 2 bytes of stack *)
BX ← Pop();
DX ← Pop();
CX ← Pop();
AX ← Pop();

FI;

Flags Affected
None.

Protected Mode Exceptions
#SS(0) If the starting or ending stack address is not within the stack segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current privilege level is 3
and alignment checking is enabled.

Real-Address Mode Exceptions
#SS If the starting or ending stack address is not within the stack segment.

Virtual-8086 Mode Exceptions
#SS(0) If the starting or ending stack address is not within the stack segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment checking is enabled.

53.15 POPF/POPFD—Pop Stack into EFLAGS Register

Description
Pops a doubleword (POPFD) from the top of the stack (if the current operand-size attribute is 32)
and stores the value in the EFLAGS register or pops a word from the top of the stack (if the
operand-size attribute is 16) and stores it in the lower 16 bits of the EFLAGS register (that is, the
FLAGS register). (These instructions reverse the operation of the PUSHF/PUSHFD instructions.)

The POPF (pop flags) and POPFD (pop flags double) mnemonics reference the same opcode. The
POPF instruction is intended for use when the operand-size attribute is 16 and the POPFD
instruction for when the operand-size attribute is 32. Some assemblers may force the operand size
to 16 when POPF is used and to 32 when POPFD is used. Others may treat these mnemonics as
synonyms (POPF/POPFD) and use the current setting of the operand-size attribute to determine the
size of values to be popped from the stack, regardless of the mnemonic used.

Opcode Instruction Description

9D POPF Pop top of stack into lower 16 bits of EFLAGS

9D POPFD Pop top of stack into EFLAGS

Intel Architecture Software Developer’s Manual 53-967

P

The effect of the POPF/POPFD instructions on the EFLAGS register changes slightly, depending
on the mode of operation of the processor. When the processor is operating in protected mode at
privilege level 0 (or in real-address mode, which is equivalent to privilege level 0), all the non-
reserved flags in the EFLAGS register except the VIP, VIF, and VM flags can be modified. The
VIP and VIF flags are cleared, and the VM flag is unaffected.

When operating in protected mode, with a privilege level greater than 0, but less than or equal to
IOPL, all the flags can be modified except the IOPL field and the VIP, VIF, and VM flags. Here,
the IOPL flags are unaffected, the VIP and VIF flags are cleared, and the VM flag is unaffected.
The interrupt flag (IF) is altered only when executing at a level at least as privileged as the IOPL. If
a POPF/POPFD instruction is executed with insufficient privilege, an exception does not occur, but
the privileged bits do not change.

When operating in virtual-8086 mode, the I/O privilege level (IOPL) must be equal to 3 to use
POPF/POPFD instructions and the VM, RF, IOPL, VIP, and VIF flags are unaffected. If the IOPL
is less than 3, the POPF/POPFD instructions cause a general-protection exception (#GP).

See “EFLAGS Register”, for information about the EFLAGS registers.

Operation
IF VM=0 (* Not in Virtual-8086 Mode *)

THEN IF CPL=0
THEN

IF OperandSize = 32;
THEN

EFLAGS ← Pop();
(* All non-reserved flags except VIP, VIF, and VM can be modified; *)
(* VIP and VIF are cleared; VM is unaffected*)

ELSE (* OperandSize = 16 *)
EFLAGS[15:0] ← Pop(); (* All non-reserved flags can be modified; *)

FI;
ELSE (* CPL > 0 *)

IF OperandSize = 32;
THEN

EFLAGS ← Pop()
(* All non-reserved bits except IOPL, VIP, and VIF can be modified; *)
(* IOPL is unaffected; VIP and VIF are cleared; VM is unaffected *)

ELSE (* OperandSize = 16 *)
EFLAGS[15:0] ← Pop();
(* All non-reserved bits except IOPL can be modified *)
(* IOPL is unaffected *)

FI;
FI;
ELSE (* In Virtual-8086 Mode *)

IF IOPL=3
THEN IF OperandSize=32

THEN
EFLAGS ← Pop()
(* All non-reserved bits except VM, RF, IOPL, VIP, and VIF *)
(* can be modified; VM, RF, IOPL, VIP, and VIF are unaffected *)

ELSE
EFLAGS[15:0] ← Pop()
(* All non-reserved bits except IOPL can be modified *)
(* IOPL is unaffected *)

FI;
ELSE (* IOPL < 3 *)

#GP(0); (* trap to virtual-8086 monitor *)
FI;

FI;
FI;

Flags Affected
All flags except the reserved bits and the VM bit.

Protected Mode Exceptions
#SS(0) If the top of stack is not within the stack segment.

53-968 Intel Architecture Software Developer’s Manual

P

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current privilege level is 3
and alignment checking is enabled.

Real-Address Mode Exceptions
#SS If the top of stack is not within the stack segment.

Virtual-8086 Mode Exceptions
#GP(0) If the I/O privilege level is less than 3.

If an attempt is made to execute the POPF/POPFD instruction with an operand-
size override prefix.

#SS(0) If the top of stack is not within the stack segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment checking is enabled.

53.16 POR—Bitwise Logical OR

Description
Performs a bitwise logical OR operation on the quadword source (second) and destination (first)
operands and stores the result in the destination operand location (see Figure 53-13). The source
operand can be an MMX register or a quadword memory location; the destination operand must be
an MMX register. Each bit of the result is made 0 if the corresponding bits of both operands are 0;
otherwise the bit is set to 1.

Operation
DEST ← DEST OR SRC;

Opcode Instruction Description

0F EB /r POR mm, mm/m64 OR quadword from mm/m64 to quadword in mm.

Figure 53-13. Operation of the POR Instruction.

POR mm, mm/m64

mm

mm/m64

mm

1111111111111000000000000000010110110101100010000111011101110111

0001000011011001010100000011000100011110111011110001010110010101

1111111111111001010100000011010110111111111011110111011111110111

3006024

Intel Architecture Software Developer’s Manual 53-969

P

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

53.17 PSLLW/PSLLD/PSLLQ—Packed Shift Left Logical

Opcode Instruction Description

0F F1 /r PSLLW mm, mm/m64 Shift words in mm left by amount specified in mm/m64,
while shifting in zeros.

0F 71 /6, ib PSLLW mm, imm8 Shift words in mm left by imm8, while shifting in zeros.

0F F2 /r PSLLD mm, mm/m64 Shift doublewords in mm left by amount specified in mm/
m64, while shifting in zeros.

53-970 Intel Architecture Software Developer’s Manual

P

Description
Shifts the bits in the data elements (words, doublewords, or quadword) in the destination operand
(first operand) to the left by the number of bits specified in the unsigned count operand (second
operand). (See Figure 53-14.) The result of the shift operation is written to the destination operand.
As the bits in the data elements are shifted left, the empty low-order bits are cleared (set to zero). If
the value specified by the count operand is greater than 15 (for words), 31 (for doublewords), or 63
(for a quadword), then the destination operand is set to all zeros.

The destination operand must be an MMX register; the count operand can be either an MMX
register, a 64-bit memory location, or an 8-bit immediate.

The PSLLW instruction shifts each of the four words of the destination operand to the left by the
number of bits specified in the count operand; the PSLLD instruction shifts each of the two
doublewords of the destination operand; and the PSLLQ instruction shifts the 64-bit quadword in
the destination operand. As the individual data elements are shifted left, the empty low-order bit
positions are filled with zeros.

Operation
IF instruction is PSLLW

THEN
DEST(15..0) ← DEST(15..0) << COUNT;
DEST(31..16) ← DEST(31..16) << COUNT;
DEST(47..32) ← DEST(47..32) << COUNT;
DEST(63..48) ← DEST(63..48) << COUNT;

ELSE IF instruction is PSLLD
THEN {

DEST(31..0) ← DEST(31..0) << COUNT;
DEST(63..32) ← DEST(63..32) << COUNT;

ELSE (* instruction is PSLLQ *)
DEST ← DEST << COUNT;

FI;

Flags Affected
None.

0F 72 /6 ib PSLLD mm, imm8 Shift doublewords in mm by imm8, while shifting in zeros.

0F F3 /r PSLLQ mm, mm/m64 Shift mm left by amount specified in mm/m64, while
shifting in zeros.

0F 73 /6 ib PSLLQ mm, imm8 Shift mm left by Imm8, while shifting in zeros.

Figure 53-14. Operation of the PSLLW Instruction

PSLLW mm, 2

mm

mm

1111111111111100

1111111111110000

0001000111000111

0100011100011100

shift left

shift left shift left shift left

3006026

Intel Architecture Software Developer’s Manual 53-971

P

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

53.18 PSRAW/PSRAD—Packed Shift Right Arithmetic

Opcode Instruction Description

0F E1 /r PSRAW mm, mm/
m64

Shift words in mm right by amount specified in mm/m64
while shifting in sign bits.

0F 71 /4 ib PSRAW mm, imm8 Shift words in mm right by imm8 while shifting in sign
bits

0F E2 /r PSRAD mm, mm/
m64

Shift doublewords in mm right by amount specified in
mm/m64 while shifting in sign bits.

0F 72 /4 ib PSRAD mm, imm8 Shift doublewords in mm right by imm8 while shifting in
sign bits.

53-972 Intel Architecture Software Developer’s Manual

P

Description
Shifts the bits in the data elements (words or doublewords) in the destination operand (first
operand) to the right by the amount of bits specified in the unsigned count operand (second
operand). (See Figure 53-15.) The result of the shift operation is written to the destination operand.
The empty high-order bits of each element are filled with the initial value of the sign bit of the data
element. If the value specified by the count operand is greater than 15 (for words) or 31 (for
doublewords), each destination data element is filled with the initial value of the sign bit of the
element.

The destination operand must be an MMX register; the count operand (source operand) can be
either an MMX register, a 64-bit memory location, or an 8-bit immediate.

The PSRAW instruction shifts each of the four words in the destination operand to the right by the
number of bits specified in the count operand; the PSRAD instruction shifts each of the two
doublewords in the destination operand. As the individual data elements are shifted right, the
empty high-order bit positions are filled with the sign value.

Operation
IF instruction is PSRAW

THEN
DEST(15..0) ← SignExtend (DEST(15..0) >> COUNT);
DEST(31..16) ← SignExtend (DEST(31..16) >> COUNT);
DEST(47..32) ← SignExtend (DEST(47..32) >> COUNT);
DEST(63..48) ← SignExtend (DEST(63..48) >> COUNT);

ELSE { (*instruction is PSRAD *)
DEST(31..0) ← SignExtend (DEST(31..0) >> COUNT);
DEST(63..32) ← SignExtend (DEST(63..32) >> COUNT);

FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Figure 53-15. Operation of the PSRAW Instruction

PSRAW mm, 2

mm

mm

1111111111111100

1111111111111111

1101000111000111

1111010001110001

shift right shift rightshift right shift right

3006048

Intel Architecture Software Developer’s Manual 53-973

P

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

53.19 PSRLW/PSRLD/PSRLQ—Packed Shift Right Logical

Description
Shifts the bits in the data elements (words, doublewords, or quadword) in the destination operand
(first operand) to the right by the number of bits specified in the unsigned count operand (second
operand). (See Figure 53-16.) The result of the shift operation is written to the destination operand.
As the bits in the data elements are shifted right, the empty high-order bits are cleared (set to zero).
If the value specified by the count operand is greater than 15 (for words), 31 (for doublewords), or
63 (for a quadword), then the destination operand is set to all zeros.

The destination operand must be an MMX register; the count operand can be either an MMX
register, a 64-bit memory location, or an 8-bit immediate.

Opcode Instruction Description

0F D1 /r PSRLW mm, mm/m64 Shift words in mm right by amount specified in
mm/m64 while shifting in zeros.

0F 71 /2 ib PSRLW mm, imm8 Shift words in mm right by imm8.

0F D2 /r PSRLD mm, mm/m64 Shift doublewords in mm right by amount specified
in mm/m64 while shifting in zeros.

0F 72 /2 ib PSRLD mm, imm8 Shift doublewords in mm right by imm8.

0F D3 /r PSRLQ mm, mm/m64 Shift mm right by amount specified in mm/m64
while shifting in zeros.

0F 73 /2 ib PSRLQ mm, imm8 Shift mm right by imm8 while shifting in zeros.

53-974 Intel Architecture Software Developer’s Manual

P

The PSRLW instruction shifts each of the four words of the destination operand to the right by the
number of bits specified in the count operand; the PSRLD instruction shifts each of the two
doublewords of the destination operand; and the PSRLQ instruction shifts the 64-bit quadword in
the destination operand. As the individual data elements are shifted right, the empty high-order bit
positions are filled with zeros.

Operation
IF instruction is PSRLW

THEN {
DEST(15..0) ← DEST(15..0) >> COUNT;
DEST(31..16) ← DEST(31..16) >> COUNT;
DEST(47..32) ← DEST(47..32) >> COUNT;
DEST(63..48) ← DEST(63..48) >> COUNT;

ELSE IF instruction is PSRLD
THEN {

DEST(31..0) ← DEST(31..0) >> COUNT;
DEST(63..32) ← DEST(63..32) >> COUNT;

ELSE (* instruction is PSRLQ *)
DEST ← DEST >> COUNT;

FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

Figure 53-16. Operation of the PSRLW Instruction

PSRLW mm, 2

mm

mm

1111111111111100

0011111111111111

0001000111000111

0000010001110001

shift right shift rightshift right shift right

3006027

Intel Architecture Software Developer’s Manual 53-975

P

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

53.20 PSUBB/PSUBW/PSUBD—Packed Subtract

Description
Subtracts the individual data elements (bytes, words, or doublewords) of the source operand
(second operand) from the individual data elements of the destination operand (first operand). (See
Figure 53-17.) If the result of a subtraction exceeds the range for the specified data type
(overflows), the result is wrapped around, meaning that the result is truncated so that only the
lower (least significant) bits of the result are returned (that is, the carry is ignored).

The destination operand must be an MMX register; the source operand can be either an MMX
register or a quadword memory location.

Opcode Instruction Description

0F F8 /r PSUBB mm, mm/
m64

Subtract packed bytes in mm/m64 from packed bytes in
mm.

0F F9 /r PSUBW mm, mm/
m64

Subtract packed words inmm/m64 from packed words
in mm.

0F FA /r PSUBD mm, mm/
m64

Subtract packed doublewords in mm/m64 from packed
doublewords in mm.

Figure 53-17. Operation of the PSUBW Instruction

PSUBW mm, mm/m64

mm

mm/m64

mm

1000000000000000

0000000000000001

0111111111111111

0111111100111000

1110100011111001

1001011000111111

3006028

– –– –

53-976 Intel Architecture Software Developer’s Manual

P

The PSUBB instruction subtracts the bytes of the source operand from the bytes of the destination
operand and stores the results to the destination operand. When an individual result is too large to
be represented in 8 bits, the lower 8 bits of the result are written to the destination operand and
therefore the result wraps around.

The PSUBW instruction subtracts the words of the source operand from the words of the
destination operand and stores the results to the destination operand. When an individual result is
too large to be represented in 16 bits, the lower 16 bits of the result are written to the destination
operand and therefore the result wraps around.

The PSUBD instruction subtracts the doublewords of the source operand from the doublewords of
the destination operand and stores the results to the destination operand. When an individual result
is too large to be represented in 32 bits, the lower 32 bits of the result are written to the destination
operand and therefore the result wraps around.

Note that like the integer SUB instruction, the PSUBB, PSUBW, and PSUBD instructions can
operate on either unsigned or signed (two’s complement notation) packed integers. Unlike the
integer instructions, none of the MMX instructions affect the EFLAGS register. With MMX
instructions, there are no carry or overflow flags to indicate when overflow has occurred, so the
software must control the range of values or else use the “with saturation” MMX instructions.

Operation
IF instruction is PSUBB

THEN
DEST(7..0) ← DEST(7..0) – SRC(7..0);
DEST(15..8) ← DEST(15..8) – SRC(15..8);
DEST(23..16) ← DEST(23..16) – SRC(23..16);
DEST(31..24) ← DEST(31..24) – SRC(31..24);
DEST(39..32) ← DEST(39..32) – SRC(39..32);
DEST(47..40) ← DEST(47..40) – SRC(47..40);
DEST(55..48) ← DEST(55..48) – SRC(55..48);
DEST(63..56) ← DEST(63..56) – SRC(63..56);

ELSEIF instruction is PSUBW
THEN

DEST(15..0) ← DEST(15..0) – SRC(15..0);
DEST(31..16) ← DEST(31..16) – SRC(31..16);
DEST(47..32) ← DEST(47..32) – SRC(47..32);
DEST(63..48) ← DEST(63..48) – SRC(63..48);

ELSE { (* instruction is PSUBD *)
DEST(31..0) ← DEST(31..0) – SRC(31..0);
DEST(63..32) ← DEST(63..32) – SRC(63..32);

FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Intel Architecture Software Developer’s Manual 53-977

P

Real-Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

53.21 PSUBSB/PSUBSW—Packed Subtract with
Saturation

Description
Subtracts the individual signed data elements (bytes or words) of the source operand (second
operand) from the individual signed data elements of the destination operand (first operand). (See
Figure 53-18.) If the result of a subtraction exceeds the range for the specified data type, the result
is saturated. The destination operand must be an MMX register; the source operand can be either an
MMX register or a quadword memory location.

Opcode Instruction Description

0F E8 /r PSUBSB mm, mm/
m64

Subtract signed packed bytes in mm/m64 from
signed packed bytes in mm and saturate.

0F E9 /r PSUBSW mm, mm/
m64

Subtract signed packed words in mm/m64 from
signed packed words in mm and saturate.

53-978 Intel Architecture Software Developer’s Manual

P

The PSUBSB instruction subtracts the signed bytes of the source operand from the signed bytes of
the destination operand and stores the results to the destination operand. When an individual result
is beyond the range of a signed byte (that is, greater than 7FH or less than 80H), the saturated byte
value of 7FH or 80H, respectively, is written to the destination operand.

The PSUBSW instruction subtracts the signed words of the source operand from the signed words
of the destination operand and stores the results to the destination operand. When an individual
result is beyond the range of a signed word (that is, greater than 7FFFH or less than 8000H), the
saturated word value of 7FFFH or 8000H, respectively, is written to the destination operand.

Operation
IF instruction is PSUBSB

THEN
DEST(7..0) ← SaturateToSignedByte(DEST(7..0) – SRC (7..0));
DEST(15..8) ← SaturateToSignedByte(DEST(15..8) – SRC(15..8));
DEST(23..16) ← SaturateToSignedByte(DEST(23..16) – SRC(23..16));
DEST(31..24) ← SaturateToSignedByte(DEST(31..24) – SRC(31..24));
DEST(39..32) ← SaturateToSignedByte(DEST(39..32) – SRC(39..32));
DEST(47..40) ← SaturateToSignedByte(DEST(47..40) – SRC(47..40));
DEST(55..48) ← SaturateToSignedByte(DEST(55..48) – SRC(55..48));
DEST(63..56) ← SaturateToSignedByte(DEST(63..56) – SRC(63..56))

ELSE (* instruction is PSUBSW *)
DEST(15..0) ← SaturateToSignedWord(DEST(15..0) – SRC(15..0));
DEST(31..16) ← SaturateToSignedWord(DEST(31..16) – SRC(31..16));
DEST(47..32) ← SaturateToSignedWord(DEST(47..32) – SRC(47..32));
DEST(63..48) ← SaturateToSignedWord(DEST(63..48) – SRC(63..48));

FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

Figure 53-18. Operation of the PSUBSW Instruction

PSUBSW mm, mm/m64

mm

mm/m64

mm

1000000000000000

0000000000000001

1000000000000000

0111111100111000

1110100011111001

0111111111111111

3006029

– –– –

Intel Architecture Software Developer’s Manual 53-979

P

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

53.22 PSUBUSB/PSUBUSW—Packed Subtract Unsigned
with Saturation

Description
Subtracts the individual unsigned data elements (bytes or words) of the source operand (second
operand) from the individual unsigned data elements of the destination operand (first operand).
(See Figure 53-19.) If the result of an individual subtraction exceeds the range for the specified
unsigned data type, the result is saturated. The destination operand musts be an MMX register; the
source operand can be either an MMX register or a quadword memory location.

Opcode Instruction Description

0F D8 /r PSUBUSB mm, mm/
m64

Subtract unsigned packed bytes in mm/m64 from
unsigned packed bytes in mm and saturate.

0F D9 /r PSUBUSW mm, mm/
m64

Subtract unsigned packed words in mm/m64 from
unsigned packed words in mm and saturate.

53-980 Intel Architecture Software Developer’s Manual

P

The PSUBUSB instruction subtracts the unsigned bytes of the source operand from the unsigned
bytes of the destination operand and stores the results to the destination operand. When an
individual result is less than zero (a negative value), the saturated unsigned byte value of 00H is
written to the destination operand.

The PSUBUSW instruction subtracts the unsigned words of the source operand from the unsigned
words of the destination operand and stores the results to the destination operand. When an
individual result is less than zero (a negative value), the saturated unsigned word value of 0000H is
written to the destination operand.

Operation
IF instruction is PSUBUSB

THEN
DEST(7..0) ← SaturateToUnsignedByte (DEST(7..0 – SRC (7..0));
DEST(15..8) ← SaturateToUnsignedByte (DEST(15..8) – SRC(15..8));
DEST(23..16) ← SaturateToUnsignedByte (DEST(23..16) – SRC(23..16));
DEST(31..24) ← SaturateToUnsignedByte (DEST(31..24) – SRC(31..24));
DEST(39..32) ← SaturateToUnsignedByte (DEST(39..32) – SRC(39..32));
DEST(47..40) ← SaturateToUnsignedByte (DEST(47..40) – SRC(47..40));
DEST(55..48) ← SaturateToUnsignedByte (DEST(55..48) – SRC(55..48));
DEST(63..56) ← SaturateToUnsignedByte (DEST(63..56) – SRC(63..56));

ELSE { (* instruction is PSUBUSW *)
DEST(15..0) ← SaturateToUnsignedWord (DEST(15..0) – SRC(15..0));
DEST(31..16) ← SaturateToUnsignedWord (DEST(31..16) – SRC(31..16));
DEST(47..32) ← SaturateToUnsignedWord (DEST(47..32) – SRC(47..32));
DEST(63..48) ← SaturateToUnsignedWord (DEST(63..48) – SRC(63..48));

FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

Figure 53-19. Operation of the PSUBUSB Instruction

PSUBUSB mm, mm/m64

mm

mm/m64

mm

10000000

11111111

00000000

01111111

00010111

01101000

11111000

00000111

11110001

3006030

– –––––– –

Intel Architecture Software Developer’s Manual 53-981

P

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

53.23 PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ—
Unpack High Packed Data

Description
Unpacks and interleaves the high-order data elements (bytes, words, or doublewords) of the
destination operand (first operand) and source operand (second operand) into the destination
operand (see Figure 53-20). The low-order data elements are ignored. The destination operand
must be an MMX register; the source operand may be either an MMX register or a 64-bit memory
location. When the source data comes from a memory operand, the full 64-bit operand is accessed
from memory, but the instruction uses only the high-order 32 bits.

Opcode Instruction Description

0F 68 /r PUNPCKHBW mm, mm/
m64

Interleave high-order bytes from mm and mm/m64 into
mm.

0F 69 /r PUNPCKHWD mm, mm/
m64

Interleave high-order words from mm and mm/m64 into
mm.

0F 6A /r PUNPCKHDQ mm, mm/
m64

Interleave high-order doublewords from mm and mm/
m64 into mm.

53-982 Intel Architecture Software Developer’s Manual

P

The PUNPCKHBW instruction interleaves the four high-order bytes of the source operand and the
four high-order bytes of the destination operand and writes them to the destination operand.

The PUNPCKHWD instruction interleaves the two high-order words of the source operand and the
two high-order words of the destination operand and writes them to the destination operand.

The PUNPCKHDQ instruction interleaves the high-order doubleword of the source operand and
the high-order doubleword of the destination operand and writes them to the destination operand.

If the source operand is all zeros, the result (stored in the destination operand) contains zero
extensions of the high-order data elements from the original value in the destination operand. With
the PUNPCKHBW instruction the high-order bytes are zero extended (that is, unpacked into
unsigned words), and with the PUNPCKHWD instruction, the high-order words are zero extended
(unpacked into unsigned doublewords).

Operation
IF instruction is PUNPCKHBW

THEN
DEST(7..0) ← DEST(39..32);
DEST(15..8) ← SRC(39..32);
DEST(23..16) ← DEST(47..40);
DEST(31..24) ← SRC(47..40);
DEST(39..32) ← DEST(55..48);
DEST(47..40) ← SRC(55..48);
DEST(55..48) ← DEST(63..56);
DEST(63..56) ← SRC(63..56);

ELSE IF instruction is PUNPCKHW
THEN

DEST(15..0) ← DEST(47..32);
DEST(31..16) ← SRC(47..32);
DEST(47..32) ← DEST(63..48);
DEST(63..48) ← SRC(63..48);

ELSE (* instruction is PUNPCKHDQ *)
DEST(31..0) ← DEST(63..32)
DEST(63..32) ← SRC(63..32);

FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS

segment limit.

Figure 53-20. High-Order Unpacking and Interleaving of Bytes
With the PUNPCKHBW Instruction

PUNPCKHBW mm, mm/m64
mm/m64 mm

1 1 1 1 1 1 1 12 2 2 2 2 2 2 2

mm
2 1 2 1 2 1 2 1

3006031

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

7 7 6 6 5 5 4 4

Intel Architecture Software Developer’s Manual 53-983

P

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

53.24 PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ—Unpack
Low Packed Data

Opcode Instruction Description

0F 60 /r PUNPCKLBW mm, mm/
m32

Interleave low-order bytes from mm and mm/m64
into mm.

0F 61 /r PUNPCKLWD mm, mm/
m32

Interleave low-order words from mm and mm/m64
into mm.

0F 62 /r PUNPCKLDQ mm, mm/
m32

Interleave low-order doublewords from mm and
mm/m64 into mm.

53-984 Intel Architecture Software Developer’s Manual

P

Description
Unpacks and interleaves the low-order data elements (bytes, words, or doublewords) of the
destination and source operands into the destination operand (see Figure 53-21). The destination
operand must be an MMX register; the source operand may be either an MMX register or a
memory location. When source data comes from an MMX register, the upper 32 bits of the register
are ignored. When the source data comes from a memory, only 32-bits are accessed from memory.

The PUNPCKLBW instruction interleaves the four low-order bytes of the source operand and the
four low-order bytes of the destination operand and writes them to the destination operand.

The PUNPCKLWD instruction interleaves the two low-order words of the source operand and the
two low-order words of the destination operand and writes them to the destination operand.

The PUNPCKLDQ instruction interleaves the low-order doubleword of the source operand and the
low-order doubleword of the destination operand and writes them to the destination operand.

If the source operand is all zeros, the result (stored in the destination operand) contains zero
extensions of the high-order data elements from the original value in the destination operand. With
the PUNPCKLBW instruction the low-order bytes are zero extended (that is, unpacked into
unsigned words), and with the PUNPCKLWD instruction, the low-order words are zero extended
(unpacked into unsigned doublewords).

Operation
IF instruction is PUNPCKLBW

THEN
DEST(63..56) ← SRC(31..24);
DEST(55..48) ← DEST(31..24);
DEST(47..40) ← SRC(23..16);
DEST(39..32) ← DEST(23..16);
DEST(31..24) ← SRC(15..8);
DEST(23..16) ← DEST(15..8);
DEST(15..8) ← SRC(7..0);
DEST(7..0) ← DEST(7..0);

ELSE IF instruction is PUNPCKLWD
THEN

DEST(63..48) ← SRC(31..16);
DEST(47..32) ← DEST(31..16);
DEST(31..16) ← SRC(15..0);
DEST(15..0) ← DEST(15..0);

ELSE (* instruction is PUNPCKLDQ *)
DEST(63..32) ← SRC(31..0);
DEST(31..0) ← DEST(31..0);

FI;

Figure 53-21. Low-Order Unpacking and Interleaving of Bytes
With the PUNPCKLBW Instruction

PUNPCKLBW mm, mm/m32
mm/m32 mm

1 1 1 1 1 1 1 12 2 2 2

mm
2 1 2 1 2 1 2 1

3006032

3 3 2 2 1 1 0 0

3 2 1 0 7 6 5 4 3 2 1 0

Intel Architecture Software Developer’s Manual 53-985

P

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

53.25 PUSH—Push Word or Doubleword Onto the Stack

Opcode Instruction Description

FF /6 PUSH r/m16 Push r/m16

FF /6 PUSH r/m32 Push r/m32

50+rw PUSH r16 Push r16

50+rd PUSH r32 Push r32

6A PUSH imm8 Push imm8

68 PUSH imm16 Push imm16

53-986 Intel Architecture Software Developer’s Manual

P

Description
Decrements the stack pointer and then stores the source operand on the top of the stack. The
address-size attribute of the stack segment determines the stack pointer size (16 bits or 32 bits), and
the operand-size attribute of the current code segment determines the amount the stack pointer is
decremented (2 bytes or 4 bytes). For example, if these address- and operand-size attributes are 32,
the 32-bit ESP register (stack pointer) is decremented by 4 and, if they are 16, the 16-bit SP register
is decremented by 2.(The B flag in the stack segment’s segment descriptor determines the stack’s
address-size attribute, and the D flag in the current code segment’s segment descriptor, along with
prefixes, determines the operand-size attribute and also the address-size attribute of the source
operand.) Pushing a 16-bit operand when the stack address-size attribute is 32 can result in a
misaligned the stack pointer (that is, the stack pointer is not aligned on a doubleword boundary).

The PUSH ESP instruction pushes the value of the ESP register as it existed before the instruction
was executed. Thus, if a PUSH instruction uses a memory operand in which the ESP register is
used as a base register for computing the operand address, the effective address of the operand is
computed before the ESP register is decremented.

In the real-address mode, if the ESP or SP register is 1 when the PUSH instruction is executed, the
processor shuts down due to a lack of stack space. No exception is generated to indicate this
condition.

Intel Architecture Compatibility
For Intel Architecture processors from the Intel 286 on, the PUSH ESP instruction pushes the value
of the ESP register as it existed before the instruction was executed. (This is also true in the real-
address and virtual-8086 modes.) For the Intel 8086 processor, the PUSH SP instruction pushes the
new value of the SP register (that is the value after it has been decremented by 2).

Operation
IF StackAddrSize = 32
THEN

IF OperandSize = 32
THEN

ESP ← ESP − 4;
SS:ESP ← SRC; (* push doubleword *)

ELSE (* OperandSize = 16*)
ESP ← ESP − 2;
SS:ESP ← SRC; (* push word *)

FI;
ELSE (* StackAddrSize = 16*)

IF OperandSize = 16
THEN

SP ← SP − 2;
 SS:SP ← SRC; (* push word *)

ELSE (* OperandSize = 32*)
SP ← SP − 4;
SS:SP ← SRC; (* push doubleword *)

FI;
FI;

68 PUSH imm32 Push imm32

0E PUSH CS Push CS

16 PUSH SS Push SS

1E PUSH DS Push DS

06 PUSH ES Push ES

0F A0 PUSH FS Push FS

0F A8 PUSH GS Push GS

Intel Architecture Software Developer’s Manual 53-987

P

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

If the new value of the SP or ESP register is outside the stack segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

53.26 PUSHA/PUSHAD—Push All General-Purpose
Registers

Description
Pushes the contents of the general-purpose registers onto the stack. The registers are stored on the
stack in the following order: EAX, ECX, EDX, EBX, ESP (original value), EBP, ESI, and EDI (if
the current operand-size attribute is 32) and AX, CX, DX, BX, SP (original value), BP, SI, and DI
(if the operand-size attribute is 16). (These instructions perform the reverse operation of the POPA/
POPAD instructions.) The value pushed for the ESP or SP register is its value before prior to
pushing the first register (see the “Operation” section below).

Opcode Instruction Description

60 PUSHA Push AX, CX, DX, BX, original SP, BP, SI, and DI

60 PUSHAD Push EAX, ECX, EDX, EBX, original ESP, EBP, ESI, and EDI

53-988 Intel Architecture Software Developer’s Manual

P

The PUSHA (push all) and PUSHAD (push all double) mnemonics reference the same opcode.
The PUSHA instruction is intended for use when the operand-size attribute is 16 and the PUSHAD
instruction for when the operand-size attribute is 32. Some assemblers may force the operand size
to 16 when PUSHA is used and to 32 when PUSHAD is used. Others may treat these mnemonics
as synonyms (PUSHA/PUSHAD) and use the current setting of the operand-size attribute to
determine the size of values to be pushed from the stack, regardless of the mnemonic used.

In the real-address mode, if the ESP or SP register is 1, 3, or 5 when the PUSHA/PUSHAD
instruction is executed, the processor shuts down due to a lack of stack space. No exception is
generated to indicate this condition.

Operation
IF OperandSize = 32 (* PUSHAD instruction *)

THEN
Temp ← (ESP);
Push(EAX);
Push(ECX);
Push(EDX);
Push(EBX);
Push(Temp);
Push(EBP);
Push(ESI);
Push(EDI);

ELSE (* OperandSize = 16, PUSHA instruction *)
Temp ← (SP);
Push(AX);
Push(CX);
Push(DX);
Push(BX);
Push(Temp);
Push(BP);
Push(SI);
Push(DI);

FI;

Flags Affected
None.

Protected Mode Exceptions
#SS(0) If the starting or ending stack address is outside the stack segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current privilege level is 3
and alignment checking is enabled.

Real-Address Mode Exceptions
#GP If the ESP or SP register contains 7, 9, 11, 13, or 15.

Virtual-8086 Mode Exceptions
#GP(0) If the ESP or SP register contains 7, 9, 11, 13, or 15.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment checking is enabled.

Intel Architecture Software Developer’s Manual 53-989

P

53.27 PUSHF/PUSHFD—Push EFLAGS Register onto the
Stack

Description
Decrements the stack pointer by 4 (if the current operand-size attribute is 32) and pushes the entire
contents of the EFLAGS register onto the stack, or decrements the stack pointer by 2 (if the
operand-size attribute is 16) and pushes the lower 16 bits of the EFLAGS register (that is, the
FLAGS register) onto the stack. (These instructions reverse the operation of the POPF/POPFD
instructions.) When copying the entire EFLAGS register to the stack, the VM and RF flags (bits 16
and 17) are not copied; instead, the values for these flags are cleared in the EFLAGS image stored
on the stack. See “EFLAGS Register”, for information about the EFLAGS registers.

The PUSHF (push flags) and PUSHFD (push flags double) mnemonics reference the same opcode.
The PUSHF instruction is intended for use when the operand-size attribute is 16 and the PUSHFD
instruction for when the operand-size attribute is 32. Some assemblers may force the operand size
to 16 when PUSHF is used and to 32 when PUSHFD is used. Others may treat these mnemonics as
synonyms (PUSHF/PUSHFD) and use the current setting of the operand-size attribute to determine
the size of values to be pushed from the stack, regardless of the mnemonic used.

When in virtual-8086 mode and the I/O privilege level (IOPL) is less than 3, the PUSHF/PUSHFD
instruction causes a general protection exception (#GP).

In the real-address mode, if the ESP or SP register is 1, 3, or 5 when the PUSHA/PUSHAD
instruction is executed, the processor shuts down due to a lack of stack space. No exception is
generated to indicate this condition.

Operation
IF (PE=0) OR (PE=1 AND ((VM=0) OR (VM=1 AND IOPL=3)))
(* Real-Address Mode, Protected mode, or Virtual-8086 mode with IOPL equal to 3 *)

THEN
IF OperandSize = 32

THEN
push(EFLAGS AND 00FCFFFFH);
(* VM and RF EFLAG bits are cleared in image stored on the stack*)

ELSE
push(EFLAGS); (* Lower 16 bits only *)

FI;
ELSE (* In Virtual-8086 Mode with IOPL less than 0 *)

#GP(0); (* Trap to virtual-8086 monitor *)
FI;

Flags Affected
None.

Protected Mode Exceptions
#SS(0) If the new value of the ESP register is outside the stack segment boundary.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description

9C PUSHF Push lower 16 bits of EFLAGS

9C PUSHFD Push EFLAGS

53-990 Intel Architecture Software Developer’s Manual

P

#AC(0) If an unaligned memory reference is made while the current privilege level is 3
and alignment checking is enabled.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
#GP(0) If the I/O privilege level is less than 3.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment checking is enabled.

Intel Architecture Software Developer’s Manual 53-991

P

53.28 PXOR—Logical Exclusive OR

Description
Performs a bitwise logical exclusive-OR (XOR) operation on the quadword source (second) and
destination (first) operands and stores the result in the destination operand location (see Figure
53-22). The source operand can be an MMX register or a quadword memory location; the
destination operand must be an MMX register. Each bit of the result is 1 if the corresponding bits of
the two operands are different; each bit is 0 if the corresponding bits of the operands are the same.

Operation
DEST ← DEST XOR SRC;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Opcode Instruction Description

0F EF /r PXOR mm, mm/m64 XOR quadword from mm/m64 to quadword in
mm.

Figure 53-22. Operation of the PXOR Instruction

PXOR mm, mm/m64

mm

mm/m64

mm

1111111111111000000000000000010110110101100010000111011101110111

0001000011011001010100000011000100011110111011110001010110010101

1110111100100001010100000011010010101011011001110110001011100010

3006033

^

53-992 Intel Architecture Software Developer’s Manual

P

Real-Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from 0 to

FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

